

April 25, 2006

Santa Rosa Associates II c/o INDUSTRIAL REALTY CO. of CA. 1091 Industrial Road Suite 101 San Carlos, California 94070-4118

SUBJECT: Groundwater Monitoring - First Quarter 2006

3842 Finley Avenue Santa Rosa, California

Dear Sirs:

Atlas Engineering Services, Incorporated (Atlas) respectfully submits the following report on groundwater monitoring conducted during the first quarter of 2006 at 3842 Finley Avenue in Santa Rosa, California. The scope of work completed includes sampling of three (3) monitor wells and one (1) set of water level measurements at the three (3) monitor wells, as required by the North Coast Regional Water Quality Control Board (NCRWQCB) "Monitoring and Reporting Program No. R1-2002-0052 (issued May 10, 2002)". Attached to this report are copies of the field notes, chain-of-custody form, and lab reports.

Introduction

The above-referenced site is reported to have formerly contained underground storage tanks (USTs) used for aviation gasoline. Three (3) monitor wells (MW-1, MW-2, and MW-3) are present on the site (Figure 2). Prior to August 1997, monitoring was conducted by other consultants. This report documents sampling of monitor wells MW-1, MW-2, and MW-3, and water level measurements at MW-1, MW-2, and MW-3 conducted at the site in the first quarter of 2006 by Atlas. Monitor wells MW-1, MW-2, and MW-3 were sampled on February 16, 2006. Water level measurements at MW-1, MW-2, and MW-3 were also taken on February 16, 2006.

Purging

On February 16, 2006, all three (3) monitor wells were purged prior to sampling. MW-1: Prior to purging, depth to water (DTW) was measured at four and fifty-one one-hundredths (4.51) feet below the top of casing (TOC). A two-inch (2") diameter submersible pump was used to purge the well. Purge water was discharged into a fifty-five (55) gallon drum for volume measurement. A total of thirty-five (35) gallons were purged from the well, equal to (3) casing volumes.

MW-2: Prior to purging, DTW was measured at three and sixty one-hundredths (3.60) feet below the TOC. A two-inch (2") diameter submersible pump was used to purge the well. Purge water was discharged into a fifty-five (55) gallon drum for volume measurement. A petroleum odor was noted in the purged groundwater. A total of thirty-five (35) gallons were purged from the well, slightly more than three (3) casing volumes.

MW-3: Prior to purging, DTW was measured at four and seventeen one-hundredths (4.17) feet below the TOC. A two-inch (2") diameter submersible pump was used to purge the well. Purge water was discharged into a fifty-five (55) gallon drum for volume measurement. A total of forty (40) gallons were purged from the well, slightly more than three (3) casing volumes.

Sampling

Atlas waited to collect a groundwater sample until the water level had recovered to eighty percent (80%) of its original level. Then a new, clean polyethylene bailer was used to remove a volume of water from the well for collection of a sample. Three (3) volatile organic analysis (VOA) vials, each containing preservative, were filled with groundwater from the bailer. All of the VOA vials were labeled with the date, location, and sampler, prior to storage on blue-ice in a cooler. Water generated by purging and sampling was placed in a storage tank pending sample analysis.

Laboratory Analyses

The sample containers were transported under chain of custody (see attached) to Entech Analytical Labs, Inc., a state certified laboratory, for analyses. All samples were analyzed for Total Petroleum Hydrocarbons as gas (TPH-gas) by EPA Method 5030C GC-MS, and benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8260B.

Copies of the lab reports are attached. Sample results are presented in Table 1 with previous results.

MW-1: The EPA Method 5030C GC-MS and 8260B analyses for the MW-1 groundwater sample reported no detectable TPH-gas, benzene, toluene, ethylbenzene, or xylenes.

MW-2: The EPA Method 5030C GC-MS and 8260B analyses for the MW-2 groundwater sample reported 3.30 milligrams per liter (mg/L) TPH-gas, 440 micrograms per liter (ug/L) benzene, 76 ug/L ethylbenzene, and 16 ug/L xylenes. The lab reported no detectable toluene.

MW-3: The EPA Method 5030C GC-MS and 8260B analysis for the MW-3 groundwater sample reported 0.03 mg/L TPH-gas. The lab reported no detectable benzene, toluene, ethylbenzene, or xylenes.

Quality Control

Quality control is included in the attached lab reports.

Horizontal Hydraulic Gradient

Immediately upon arrival at the site, and prior to purging and sampling, DTW measurements were taken at all three (3) wells by Atlas on February 16, 2006 using an electronic well sounder (see attached field notes). To calculate the horizontal hydraulic gradient, Atlas used TOCs referenced to Mean Sea Level (MSL) (Table 3) and casing coordinates (Table 2) surveyed by Atlas using global positioning survey (GPS) equipment on August 18, 2004. The water surface elevations (WSEs) were calculated as the difference between TOC and DTW (Table 3).

Using such data, the horizontal hydraulic gradient was calculated for February 16, 2006 to be twelve ten-thousandths (0.0012) foot per foot in a direction approximately one hundred ninety-six (196) degrees clockwise from north, or approximately towards the south (Table 4; Figure 2).

Summary and Conclusions

This report has been prepared to document quarterly groundwater monitoring conducted at 3842 Finley Avenue, in Santa Rosa, California (Figure 1) during the first quarter of 2006. The sampling and analyses were conducted in accordance with the requirements of the NCRWQCB "Monitoring and Reporting Program No. R1-2002-0052". In accordance therewith, monitor wells MW-1, MW-2, and MW-3 were sampled on February 16, 2006.

Analysis of the MW-1 groundwater sample reported no detectable TPH-gas, benzene, toluene, ethylbenzene, or xylenes (Table 1).

Analyses of the MW-2 groundwater sample reported 3.30 mg/L TPH-gas, 440 ug/L benzene, 76 ug/L ethylbenzene, and 16 ug/L xylenes. No toluene was detected.

Analysis of the MW-3 groundwater sample reported 0.03 mg/L TPH-gas.

Water level measurements were collected at all three (3) wells (Table 3). The horizontal hydraulic gradient was calculated for February 16, 2006 to be twelve tenthousandths (0.0012) foot per foot in a direction approximately one hundred ninety-six (196) degrees clockwise from north, or approximately towards the south.

Recommendations

In accordance with "Monitoring and Reporting Program No. R1-2002-0052" issued by the NCRWQCB for the site, Atlas recommends sampling of monitor well MW-2 during the next quarter, and collection of water level measurements from all three (3) wells for use in determining the horizontal hydraulic gradient.

If separate phase compounds are present in MW-2 groundwater during the second quarter 2006 sampling event, Atlas also recommends sampling and analysis of MW-2 groundwater for SVOCs by EPA Method 8270C during the second quarter 2006 to verify the phthalates detected in the first quarter 2005.

Please call me at (831) 426-1440 if you have any questions or require additional information.

Sincerely,

Frederick A. Yukic, MS, PE Principal Engineer

Mr. Stephen Bargsten, NCRWQCB Mr. Gerald Vincent, USACE CC:

Table 1. Water Analytical Results Santa Rosa Air Center 3842 Finley Avenue Santa Rosa, California

Location	Date	TPH-gas	TPH-avgas	TEPH	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE	Semi Volatile Organic
		mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Overex.	4/20/1992	0.13			1.7	ND	0.8	ND		
MW-1	3/4/1994	0.09			ND	0.5	ND	0.7		
	6/30/1994	0.26			ND	ND	ND	ND		
	10/5/1994	ND			ND	ND	ND	ND		
	12/15/1994	ND			ND	ND	ND	ND		
	6/21/1995	0.15			ND	11.0	3.3	1.5		
	9/25/1995	0.24			1.4	ND	ND	ND		
	3/8/1996	0.12			0.89	ND	ND	ND		
	12/24/1996	0.059			ND	ND	ND	ND		
	4/14/1997	0.055			ND	ND	ND	ND		
	7/16/1997	0.053			ND	ND	ND	ND		
	8/19/1997	0.12			ND	ND	ND	ND	ND	
	11/14/1997	0.055			ND	ND	ND	ND	ND	
	2/17/1998	ND			ND	ND	ND	ND	ND	
	5/14/1998	0.12			ND	ND	ND	ND	ND	
	11/19/1998	ND			ND	ND	ND	ND	ND	
	5/18/1999	ND	0.072		ND	ND	ND	ND	ND**	
	11/23/1999	ND	ND		ND	ND	ND	ND	ND**	
	5/16/2000	ND	ND		ND	ND	ND	ND	ND**	
	11/21/2000	ND	ND		ND	ND	ND	ND	ND	
	6/4/2001	0.064			ND	ND	ND	ND	ND	
	12/8/2001	0.114			ND	2.2	ND	2.9		
	5/17/2002	ND			ND	ND	ND	ND		
	2/20/2003	ND			ND	ND	ND	ND		
	2/28/2004	ND			ND	ND	ND	ND	ND	
	2/17/2005	ND			ND	ND	0.6	2.5		ND
	2/16/2006	ND		-	ND	ND	ND	ND	-	

Notes: * = by EPA Method 8240 ** = by EPA Method 8260

^{*** =} chromatogram pattern is not typical of fuel

Table 1. Water Analytical Results Santa Rosa Air Center 3842 Finley Avenue Santa Rosa, California

Location	Date	TPH-gas	TPH-avgas	TEPH	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE	VOCs	Diesel Fuel #2	Kerosene	Motor Oils	Semi Volatile Organics	Stoddard
		mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW-2	3/4/1994	1.3			46.	26.	14.	29.							· <u> </u>
	6/30/1994	2.2			ND	ND	ND	ND							<u> </u>
	10/5/1994	0.32			150.	1.7	4.4	5.							<u></u>
	12/15/1994	0.58			57.	ND	ND	ND							
	6/21/1995	3.6			1200.	5.9	140.	37.							·
	9/25/1995	4.1			1300.	7.1	150.	28.							·
	3/8/1996	8.6			2600.	10.	270.	46.							. <u></u>
	12/24/1996	8.5			3100.	9.4	350.	33.							· <u> </u>
	4/14/1997	9.1			3200.	11.	310.	40.							·
	7/16/1997	4.8			1800.	16.	130.	11.							
	8/19/1997	2.1			290.	ND	ND	ND	ND						
	11/14/1997	3.7			220.	ND	6.	2.6	ND						
	2/17/1998	1.5		ND	97.	ND	1.	0.79	ND						
	5/14/1998	1.5			140.	ND	3.3	0.71	41.						
	8/18/1998	2.5			610.	ND	ND	ND	ND						
					530*	ND*	ND*	ND*	ND*	ND*					
	11/19/1998	3.2			480.	0.76	8.	4.3	15.						
									ND**						
	2/11/1999	ND	0.16		72.	1.1	0.81	ND	ND**						
	5/18/1999	ND	2.0		370.	ND	4.5	2.9	ND**						
	8/17/1999	2.3	ND		490.	24.	15.	8.3	ND**						
	11/23/1999	3.6	ND		310.	19.	10.	ND	ND**						
	1/13/2000	2.5	ND		120.	3.3	2.2	1.5	ND**						.†
	5/16/2000	2.7	ND		380.	11.	22.	19.	ND**						
	8/24/2000	1.0	ND		400.	ND	6.6	ND							.
	11/21/2000	2.3	1.8		200.	4.4	4.1	3.4	34.						
	2/26/2001	ND	ND		ND	ND	ND	ND							
	5/22/2001	4.7			200.	32.	1.	5.	ND**						
	9/1/2001	2.0			390.	11.	8.	2.							
	12/8/2001	9.67			1190.	46.5	1050.	506.							.†
	2/28/2002	7.63			2250.	48.6	448.	231.							.t
	5/17/2002	9.08			2180.	37.8	470.	161.							<u> </u>
	8/23/2002	5.45			1000.	35.8	195.	77.8							.
	11/21/2002	4.85			920.	35.1	297.	131.							.
	2/20/2003	4.35			1190.	11.	201.	83.2							.
	5/23/2003	8.16			1220.	28.2	436.	110.							<u> </u>
	8/15/2003	5.21			938.	20.2	200.	50.							
	11/20/2003	7.33			1360.	24.1	345.	117.							.
	2/28/2004	3.61			524.	7.5	125.	42.1	ND						
	5/20/2004	4.28			934.	9.7	73.7	39.7	ND ND					 	
	8/18/2004	1.64			954. 852.	12.9	117.	33.3							
	10/29/2004	8.22			2100.	14.7	424.	123.			60****	129****	11****		
	2/17/2005	4.29			547.	18.8	124.	31.2			00	123	- 11	0.146	
					637.			22.5			0.11****	0.12****	ND	0.146	
	5/17/2005	1.82				3.1	97.5								0.14***
	9/1/2005	4.1			1000.	ND	78.	14.			ND	290***	ND		- ND
	11/17/2005	5.3			1100.	ND	23.	5.8			ND	ND	ND		- ND
	2/16/2005	3.3			440.	ND	76.	16.					-		_

Notes: * = by EPA Method 8240

^{** =} by EPA Method 8260

^{*** =} chromatogram pattern is not typical of fuel

^{**** =} chromatogram pattern is not typical of diesel or kerosene, due to gasoline overlap

^{***** =} chromatogram pattern is not typical of motor oils, due to single peaks

Table 1. Water Analytical Results Santa Rosa Air Center 3842 Finley Avenue Santa Rosa, California

Location	Date	TPH-gas	TPH-avgas	TEPH	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE	VOCs
		mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-3	3/4/1994	ND			ND	ND	ND	ND		
	6/30/1994	0.84			ND	ND	ND	ND		
	10/5/1994	ND			ND	ND	ND	ND		
	12/15/1994	ND			ND	ND	ND	ND		
	6/21/1995	ND			0.8	ND	ND	ND		
	9/25/1995	ND			ND	ND	ND	ND		
	3/8/1996	ND			ND	ND	ND	ND		
	12/24/1996	0.052			1.1	ND	ND	0.69		
	4/14/1997	ND			ND	ND	ND	ND		
	7/16/1997	0.056			ND	ND	ND	ND		
	8/19/1997	0.9			ND	ND	ND	ND	ND	
	11/14/1997	0.19			ND	ND	ND	ND	ND	
	2/17/1998	ND			0.7	ND	ND	ND	ND	
	5/14/1998	ND			ND	ND	ND	ND	ND	
	11/19/1998	0.058			ND	ND	ND	ND	ND	
	5/18/1999	ND	0.082		ND	ND	ND	ND	ND**	
	11/23/1999	0.066***	ND		ND	ND	ND	ND	ND**	
	5/16/2000	ND	ND		ND	ND	ND	ND	ND**	
	11/21/2000	0.077***	ND		ND	ND	ND	ND	ND	
	6/4/2001	0.1			ND	ND	ND	ND	ND**	
	12/8/2001	0.091			ND	ND	ND	ND		
	5/17/2002	0.06			ND	ND	ND	ND		
	2/20/2003	ND			0.6	ND	ND	ND		
	2/28/2004	0.059			ND	ND	ND	ND	ND	
	2/17/2005	0.081			4.5	ND	ND	ND		
	2/16/2006	0.030			ND	ND	ND	ND		

Notes: * = by EPA Method 8240

^{** =} by EPA Method 8260

^{*** =} chromatogram pattern is not typical of fuel

Table 2 Monitor Well Coordinates 3842 Finley Avenue Santa Rosa, California

Well	Easting	Northing
MW-1	5,913,720.80	2,346,339.39
MW-2	5,913,598.50	2,346,408.63
MW-3	5,913,567.51	2,346,287.18

Notes: California Coordinates measured on August 18, 2004 by Atlas using GPS equipment.

Table 3 Water Level Measurements 3842 Finley Avenue Santa Rosa, California

Well Top of Casing (TOC)		Depth to Water Elevation (DTW)	Water Surface Elevation (WSE)	
February :		4.54	00.00	
MW-1	97.60	4.51	93.09	
MW-2	96.73	3.60	93.13	
MW-3	97.15	4.17	92.98	

Notes: Elevations referenced to Mean Sea Level (MSL) All measurements are in feet.

Table 4. Horizontal Hydraulic Gradients 3842 Finley Avenue Santa Rosa, California

Date	Magnitude	Angle from North
4/24/1994	0.001	215
5/27/1994	0.002	232
6/30/1994	0.001	238
7/21/1994	0.0017	237
8/26/1994	0.0016	258
10/5/1994	0.0016	246
10/21/1994	0.002	248
12/15/1994	0.001	149
6/21/1995	0.003	198
9/25/1995	0.002	235
3/8/1996	0.001	164
12/24/1996	0.001	152
4/14/1997	0.002	196
7/16/1997	0.002	255
8/19/1997	0.0016	306
		269
9/16/1997 10/17/1997	0.0023 0.0013	321
11/14/1997	0.0015	283
12/18/1997		124
	0.0010	124
1/16/1998	0.0013 0.00044	274
2/17/1998		
3/12/1998	0.0010	241
4/16/1998	0.0016	239
5/14/1998	0.0022	216
6/16/1998	0.0028	233
8/18/1998	0.0016	244 257
11/19/1998	0.0014	
2/11/1999	0.0015	168
5/18/1999	0.0018	236
9/27/1999	0.0030	268
11/23/1999	0.0015	292
1/13/2000	0.0017	260
5/16/2000	0.0022	230
8/24/2000	0.0020	271
11/21/2000	0.0019	287
2/26/2001	0.0007	181
5/22/2001	0.0018	253
9/1/2001	0.0044	295
12/8/2001	0.0076	125
3/26/2002	0.0017	196
5/17/2002	0.0023	224
8/23/2002	0.0087	106
11/21/2002	0.0016	319
2/20/2003	0.0016	170
5/23/2003	0.0016	233
8/15/2003	0.0028	260
11/20/2003	0.0021	265
2/28/2004	0.0017	183
5/20/2004	0.0020	235
8/18/2004	0.0029	260
10/29/2004	0.0019	282

Note: Beginning 8/18/04, gradients calculated using coordinates determined by Atlas using GPS equipment

Table 4. Horizontal Hydraulic Gradients 3842 Finley Avenue Santa Rosa, California

Date	Magnitude	Angle from North
2/17/2005	0.0013	167
5/17/2005	0.0018	213
9/1/2005	0.0070	135
11/17/2005	0.0016	282
2/16/2006	0.0012	196

ATLAS
ENGINEERING SERVICES,
INCORPORATED

Scale: 1"=2000'

Revised: 1/10/06

Figure 1. Location Map 3482 Finely Avenue Santa Rosa, California

Scale: 1"=20'

Revised: 9/19/05

Figure 2. Site Plan 3842 Finle

3842 Finley Avenue Santa Rosa, California FIELD SHEET

JOB/SITE NAM WORK DONE E		
ACTIVITY:	14 GW Monitoring	
EQUIPMENT R	ENTAL/DRILLER:	HOURS
NOTES: TIME 0630	DESCRIPTION Left office	
0950	on site, meeting W/ Larry (Grounds Keeper)	
1015	Opened wells, strong vapor pressure, allowing to	o stabalize
	Checking water Levels ID DTW DTW MW-1 4.51 4.51 MW-3 4.17 4.17 MW-2 3.60 3.60	
	Purged wells using 12 volt pump.	
	Sampled MW-1, then MW-3, then MW-2	
	Sampled MW-2 w/ 12-volt pump from discharges sampled MW-1 and MW-3 w/ clean, new discharges bailers.	e hose. posable
	Transferred furge water using 5 gallon but to onsite Tank	kets
	Checked MW-2 for F.P. before purging u/ bailer. None observed.	
1400	Leftsite	

	DATA SHEET FOR SAMPLING WELL	MW	- 1
JOB NAME	SRAC	DATE	2/16/06

SAMPLED BY JE	SHEET OF _	
WELL DEPTH (WD) 21.6 INITIAL DEPTH TO WATER (DTWI) 4.51 (WD - DTWI) (X GAL/FT) = CASING VOLUME (CV) 21.6 - 4.51) (0.66 GAL/FT) = 11.3 GAL/CV (3 CV) (GAL/CV) = 3 CASING VOLUMES (3) 1.3 = 33.9 GALLONS NEED TO BE PURGE	DIA. 2" 4" 6"	X 0.17 0.66 1.5

TIME	DTW	GALS	MICR S	PH	TEMP C	TURB	NOTES
1104	4.51	0					
1109		10	1292	7.30	18.3	2,24	Clear
1116		20	1274	7.23	18.7	1.90	
1123		30	1254	7.22	18.0	0.71	
1126	8.65	35	1261	7.22	18.3	0.57	
1137	5.34						Sampling - 2 1-LAmbers 3 VOAs
1145							Sampling - 2 1-LAmbers
							3 4045
							w/ Bailer
							'
EINIAL DES	TILL TO 14/4	TED (DTM)	E\				

FINAL DEPTH TO WATER (DTWF) 8.65

0.2 (DTWF) + 0.8 (DTWI) = DTW FOR 80% RECOVERY (DTW 80%R)

0.2 (8.65) + 0.8 (4.51) = 5.34 FT MAX. BEFORE SAMPLING

DATA SHEET FOR SAMPLING WELL _Mu/-2____

JOB NAME <u>SRAC</u> SAMPLED BY JE	DATE _ SHEET	2116106 1 OF	T
OAIVII LEB BT			
USE POSITIVE VALUES		DIA.	X
WELL DEPTH (WD) 21		2"	0.17
INITIAL DEPTH TO WATER (DTWI) 3.6		4 "	0.66
(WD - DTWI) (X GAL/FT) = CASING VOLUME (CV)		6"	1.5
(2) - 3.6)(0.66 GAL/FT) = 11.5 GAL/CV			
(3 CV) (GAL/CV) = 3 CASING VOLUMES			
(3)(11.5) = 34.5 GALLONS NEED TO BE PURGE	D		

TIME	DTW	GALS	MICR S	PH	TEMP C	TURB	NOTES
1245		0					Checked for F.F None
1251		10	611	6.97	17.0	15.77	Checked for F.F None Partly Cloudy - dk Brown Petroleum Odor, no sheen
1258		20	626	6.91	16.7	7.51	Petroleum odor, no sheen
1305		30	628	6.90	16.9	6.07	
1308	13.00	35	632	691	16.8	7.54	1
1324	5.48						80% Recarry
1330							Sampling - 3 UDAS 2-1-L Ambers W/ 12 volt Pump
							2-1-LAmbers
							W/ 12 volt Pump
			:				,

FINAL DEPTH TO WATER (DTWF) 13.00

0.2 (DTWF) + 0.8 (DTWI) = DTW FOR 80% RECOVERY (DTW 80%R)

0.2 (13.00) + 0.8 (3.6) = 5.48 FT MAX. BEFORE SAMPLING

DATA SHEET FOR SAMPLING WELL _	MW-3_	
JOB NAME <u>SRAC</u> SAMPLED BY <u>JE</u>	DATE OI	
USE POSITIVE VALUES WELL DEPTH (WD) 23 INITIAL DEPTH TO WATER (DTWI) 4.17 (WD - DTWI) (X GAL/FT) = CASING VOLUME (CV) ($23 - 4.17$) (0.66 GAL/FT) = 12.4 GAL/CV (3 CV) (GAL/CV) = 3 CASING VOLUMES (3) (12.4) = 37.2 GALLONS NEED TO BE PURGE	DIA. 2" 6"	X 0.17 0.66 1.5

DTW	GALS	MICR S	PH	TEMP C	TURB	NOTES
4,17	0					
	10	982	7.08	18.4	3.16	Clear
	20	764	7.04	18.4	4.94	
	30	737	7.03	18.3	4,43	
8.20	40	729	7.03	18.3	3,79	
5,01						Sampling - 3 VOAS 2 1-L Ambers W/ Bailer
-						Sampling - 3UOAS
						2 1-L Ambers
						W/Bailer
_				·-		,
						
	4.17	4,17 0 10 20 30 8.20 40	4,1701098220764307378.2040729	4,17 0 10 982 7.08 20 764 7.04 30 737 7.03 8.20 40 729 7.03	4,17 0 10 982 7.08 18.4 20 764 7.04 18.4 30 737 7.03 18.3 8.20 40 729 7.03 18.3	4,17 0 10 982 7.08 18.4 3.16 20 764 7.04 18.4 4.94 30 737 7.03 18.3 4.43 8.20 40 729 7.03 18.3 3.79

FINAL DEPTH TO WATER (DTWF) 9.200.2 (DTWF) + 0.8 (DTWI) = DTW FOR 80% RECOVERY (DTW 80%R) 0.2 (9.20) + 0.8 (4.17) = 5.01 FT MAX. BEFORE SAMPLING

Entech Analytical Labs, Inc.

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Fred Yukic Lab Certificate Number: 47949

Atlas Engineering Services Issued: 02/27/2006

P.O. Box 1260

Santa Cruz, CA 95061

Project Name: SRAC Global ID: T060972349

Project Location: Finley Ave, Santa Rosa

Certificate of Analysis - Final Report

On February 17, 2006, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test Comments

Liquid Electronic Deliverables

Cy

EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

TPH as Gasoline by GC/MS

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

Erin Cunniffe

Operations Manager

Reviewed by: dba

Entech Analytical Labs, Inc.

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Atlas Engineering Services P.O. Box 1260 Santa Cruz, CA 95061

Attn: Fred Yukic

Project Name: SRAC

Project Location: Finley Ave, Santa Rosa

GlobalID: T060972349

Certificate of Analysis - Data Report

Samples Received: 02/17/2006 Sample Collected by: Client

Lab #: 47949-001	Sample ID: MW-1	Matrix: Liquid	Sample Date: 2/16/2006	11:45 AM

EPA 5030C EPA 8260B for Groundwater and Water EPA 624 for Wastewater 8260										
Parameter	Result	Qual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch		
Benzene	ND	1.0	0.50	μg/L	N/A	N/A	2/26/2006	WM2060226		
Toluene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	2/26/2006	WM2060226		
Ethyl Benzene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	2/26/2006	WM2060226		
Xylenes, Total	ND	1.0	0.50	μg/L	N/A	N/A	2/26/2006	WM2060226		
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: MT	u		

Surrogate	Bullogate Recovery	Control		imis (70	
4-Bromofluorobenzene	89.3	60	-	130	
Dibromofluoromethane	98.7	60	-	130	
Toluene-d8	98.2	60	-	130	

EPA 5030C GC-MS

Parameter

Result Qual D/P-F Detection Limit Units Prep Date Prep Batch Analysis Date QC Batch

1 ai ailictei	Result Qu	ai D/1-1	Detection Limit	Cinto	11cp Date	I Tep Daten	maiyaa Dac	QC Daten
TPH as Gasoline	ND	1.0	25	μg/L	N/A	N/A	2/26/2006	WM2060226
Surrogate	Surrogate Recovery	Control L	imits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	88.1	60 -	130				Reviewed by: dba	
Dibromofluoromethane	94.4	60 -	130					
Toluene-d8	98.2	60 -	130					

Lab #: 47949-002	Sample ID: MW-3	Matrix: Liquid	Sample Date: 2/16/2006	12:35 PM
-------------------------	-----------------	----------------	-------------------------------	----------

EPA 5030C EPA 8260B for Groundwater and Water EPA 624 for Wastewater 8260Petroleum											
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch		
Benzene	ND		1.0	0.50	μg/L	N/A	N/A	2/26/2006	WM2060226		
Toluene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	2/26/2006	WM2060226		
Ethyl Benzene	ND		1.0	0.50	μg/L	N/A	N/A	2/26/2006	WM2060226		
Xylenes, Total	ND		1.0	0.50	$\mu g/L$	N/A	N/A	2/26/2006	WM2060226		

Surrogate	Surrogate Recovery	Control Limits (%)	Analyze
4-Bromofluorobenzene	91.0	60 - 130	Reviewe
Dibromofluoromethane	103	60 - 130	
Toluene-d8	97.1	60 - 130	

EPA 5030C GC-MS								TPH as Gaso	line - GC-MS
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch

1 ai ailictei	Result Qu	u D/1 -1	Detection Limit	Cinto	11cp Date	1 rep Daten	marysis Date	QC Daten
TPH as Gasoline	30	1.0	25	μg/L	N/A	N/A	2/26/2006	WM2060226
Surrogate	Surrogate Recovery	Control l	Limits (%)				Analyzed by: MTu	
4-Bromofluorobenzene	89.7	60 -	130				Reviewed by: dba	
Dibromofluoromethane	98.1	60 -	130					
Toluene-d8	97.2	60 -	130					

Analyzed by: MTu Reviewed by: dba

Analyzed by: MTu Reviewed by: dba

Entech Analytical Labs, Inc.

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Atlas Engineering Services P.O. Box 1260 Santa Cruz, CA 95061

Attn: Fred Yukic

Project Name: SRAC

Project Location: Finley Ave, Santa Rosa

GlobalID: T060972349

Certificate of Analysis - Data Report

Samples Received: 02/17/2006 Sample Collected by: Client

Lab #: 47949-003 Sample ID: MW-2 Matrix: Liquid Sample Date: 2/16/2006 1:30 PM

EPA 5030C EPA 8260B for Groundwater and Water EPA 624 for Wastewater 8260Petroleum										
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
Benzene	440		10	5.0	μg/L	N/A	N/A	2/26/2006	WM2060226	
Toluene	ND		10	5.0	$\mu g/L$	N/A	N/A	2/26/2006	WM2060226	
Ethyl Benzene	76		10	5.0	$\mu g/L$	N/A	N/A	2/26/2006	WM2060226	
Xylenes, Total	16		10	5.0	μg/L	N/A	N/A	2/26/2006	WM2060226	

Surrogate	Surrogate Recovery	Control Limits (%			
4-Bromofluorobenzene	92.0	60 -	- 130		
Dibromofluoromethane	102	60 -	- 130		
Toluene-d8	98.0	60 -	- 130		

TPH as Gasoline - GC-MS EPA 5030C GC-MS D/P-F **Parameter** Result Qual **Detection Limit** Units **Prep Date Prep Batch Analysis Date** QC Batch TPH as Gasoline 3300 10 250 N/A 2/26/2006 WM2060226 $\mu\,g/L$ N/A

Surrogate	Surrogate Recovery	Control Limits (%)				
4-Bromofluorobenzene	90.6	60	-	130		
Dibromofluoromethane	97.4	60	-	130		
Toluene-d8	98.0	60	-	130		

Entech Analytical Labs, Inc.

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - EPA 8260B - 8260Petroleum

QC Batch ID: WM2060226 Validated by: dba - 02/27/06

QC Batch Analysis Date: 2/26/2006

Parameter	Result	DF	PQLR	Units
Benzene	ND	1	0.50	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Toluene	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank		% Recovery	Control Limits				
	4-Bromofluorobenzene	95.3	60	-	130		
	Dibromofluoromethane	99.9	60	-	130		
	Toluene-d8	97.8	60	_	130		

Laboratory Control Sample / Duplicate - Liquid - EPA 8260B - 8260Petroleum

QC Batch ID: WM2060226Reviewed by: dba - 02/27/06

QC Batch ID Analysis Date: 2/26/2006

LCS

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	< 0.50	20	20.6	μg/L	103	70 - 130
Benzene	< 0.50	20	21.6	μg/L	108	70 - 130
Chlorobenzene	< 0.50	20	21.5	μg/L	108	70 - 130
Methyl-t-butyl Ether	<1.0	20	22.5	μg/L	113	70 - 130
Toluene	< 0.50	20	20.5	μg/L	103	70 - 130
Trichloroethene	< 0.50	20	21.2	μg/L	106	70 - 130

Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	102.0	60 - 130				
Dibromofluoromethane	104.0	60 - 130				
Toluene-d8	94.3	60 - 130				

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	< 0.50	20	18.6	μg/L	93.1	9.9	25.0	70 - 130
Benzene	< 0.50	20	19.6	μg/L	98.0	9.6	25.0	70 - 130
Chlorobenzene	< 0.50	20	19.4	μg/L	97.1	10	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	18.8	μg/L	94.0	18	25.0	70 - 130
Toluene	< 0.50	20	19.6	μg/L	98.2	4.5	25.0	70 - 130
Trichloroethene	< 0.50	20	18.6	μg/L	93.0	13	25.0	70 - 130

Surrogate	% Recovery	Control Limit				
4-Bromofluorobenzene	98.9	60 - 130				
Dibromofluoromethane	101.0	60 - 130				
Toluene-d8	94.1	60 - 130				

Entech Analytical Labs, Inc.

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - GC-MS - TPH as Gasoline - GC-MS

QC Batch ID: WM2060226 Validated by: dba - 02/27/06

QC Batch Analysis Date: 2/26/2006

Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	94.0	60	-	130		
Dibromofluoromethane	95.5	60	-	130		
Toluene-d8	97.8	60	-	130		

Laboratory Control Sample / Duplicate - Liquid - GC-MS - TPH as Gasoline - GC-MS

QC Batch ID: WM2060226 Reviewed by: dba - 02/27/06

QC Batch ID Analysis Date: 2/26/2006

LCS

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25	250	279	μg/L	111	65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	92.0	60 - 130				
Dibromofluoromethane	93.7	60 - 130				
Toluene-d8	97.8	60 - 130				

LCSD

Parameter	Method Bl	ank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	250	262	μg/L	105	6.1	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	93.4	60 - 130						
Dibromofluoromethane	94.7	60 - 130						
Toluene-d8	96.7	60 - 130						

					 		 											Page 6	0 01 0
June 2004	Relinquished by:	Remained by Received by	Relinquished by:				MW-2 CO2	MW - 3 002	100-001 th	Client ID / Field Point Lab. No.	Order ID: 47949	Global ID: 1010972349	Sampler: Field Org. Code:		Cruz	ネ で 60	Englaceria	Attention to: Fred Yuki'L	Entech Analytical 3334 Victor Court (408) 588 Santa Clara, CA 95054 (408) 588
	Date ³	17/06	2/17/06/11				₩ 1330	1235	2/11/06 1145	Date Time	Sample	4 Day 0 5	ചെ		(Email Address: 17 Has @ Cruzio, Com	((\$31) 426-1288	Phone No.: (831) 426-1440	Labs, 1 8-0200 3-0201 - Fax
		6	30				e		E	Matrix		Day	Day Day				,		nc.
	Al, As, Sb, Ba, Be, Bi, B, Cd, Ce, (Ga, Ge, Hg, In, Li, Mo, Ni, P, K, Si,	Metals:	Special Instructions or C	Ц			X X	***************************************	\(\frac{1}{2}\)	No. of Containers EPA 8260B BTEX ANTBE TRY Case Society Marie TRY EPA 520C JAH - 8270C J				,) (c,	Project Location: Cit	Project Name: 5RAC	Project No.:	Purchase Order No.:	in of C
	s, Ca, Cr, Co, Cs, Cu, Si, Ag, Na, S, Se, Sr,	· ····································	Comments						 X	Pesticides-8081 THY 85 Gas/BTE	STORY OF PERSONS AND	PAH 822	Ethanol J SC SIM J SC	MS Methods	City:	Billing Address: (If Different)	Company:	Invoice to: (If Different)	ıstody
	Cu, Fe, Pb, Mg, Mn, ,, Sr, Ta, Te, Tl, Sn, Ti, Zn,		K [TOH as Gas 18TE, Methanol by 80	15M	by 8015M	1/8020	GC Methods		Different)		ent)	ustody / Analysis
	V, W, Zr		EDF Report							A Priores SS	SOA DAO	3210		General	State: 2		Quote No.:	Phone:	
	☐ PPM-13	☐ RCRA-8								New Sold Remarks	Colon STO	TRPH 3 O	PO4 2 8 6 3	General Chemistry	21p:				Request